Implementation of LDPC Decoders

Mohammad M. Mansour

ECE Department
American University of Beirut
Beirut, Lebanon

Email: mmansour@aub.edu.lb

Invited Paper

IEEE Communication Theory Workshop
Park City, UTAH
June 12-15, 2005
Outline

- Preliminaries
- Implementation challenges of current LDPC decoders
- New design methodology for LDPC codes and decoders
 - Code design: Architecture-aware (AA) LDPC code design
 - Algorithms: Turbo-decoding of LDPC codes, simple message computation algorithm
 - Architecture: Advanced scalable/programmable/tunable LDPC decoding platform
 - Physical design: Core-generator for LDPC decoders
- LDPC decoder chip implementation
- Performance results
- Generalizations to Repeat-Accumulate Codecs
- Conclusions
LDPC Codes

- Introduced by Gallager in ’63, “rediscovered” at least 3 times after turbo codes
- LDPC codes are linear block codes defined as the null-space of a sparse parity-check matrix $H_{m \times n}$.
 - Regular (c, r)-LDPC: H has exactly c 1’s per column, r 1’s per row
 - Irregular (C, R)-LDPC: Distribution of 1’s is drawn from C and R
- Encoding complexity: quadratic in code length
- Decoding: Efficient sub-optimal iterative two-phase message-passing (TPMP) algorithm
- Reappeared as irregular repeat-accumulate (IRA) codes [1]

\[
H = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Gallager’s Two-Phase Message-Passing (TPMP) Algorithm

- TPMP algorithm is an iterative decoding algorithm consisting of two phases of computations that improve the log-likelihood estimate $\ln \left(\frac{P_i(1)}{P_i(0)} \right)$ of each bit:

 - **Phase 1**: Bit-to-check messages (Q) proportional to the prob. that a bit is 1 given that it satisfies the other checks.

 - **Phase 2**: Check-to-bit messages (R) corresponding to the prob. with which the bit satisfies a check given the prob. of the remaining bits being 1.
Parallel LDPC Decoders: Implementation Challenges

- Parallel/Crossbar Architectures: Mimic topology of Tanner graph
 - Allocate a Bit Function Unit (BFU) for each bit-node, a Check Function Unit (CFU) for each check-node, connect through interconnection network

- Advantages: High-throughput

- Disadvantages:
 - Complex interconnect limiting scalability and clock speed
 - Prohibitive number of function units
 - Power consumption: Uses registers to store messages
Implementation Challenges (cont’d)

- Interconnect bottleneck restricts efficient implementation.
- Ring placement topology has average interconnect length $\propto \mathcal{O}(\sqrt{n})$
 - 52.5 mm2 area for only a 1K code in 0.18 μm CMOS!
 - 50% utilization, 3 mm-interconnect, routing congestion restricts clock speed.
Interconnect Bottleneck of Parallel Architectures (cont’d)

- Based on post-layout data for a regular (3,6)-LDPC code in 0.18 μm, 1.8 V CMOS technology

![Graph showing average interconnect length (mm) and decoder area (mm²) vs n (x 1024)]
Serial LDPC Decoder Architectures

- Fold bit-message and check-message computations onto a small set of BFUs and CFUs.
- Store all messages in centralized memory, and communicate through read/write networks.

Disadvantages:
- Significant memory overhead
- Each FU needs separate read/write networks
- Complex network control
- Low throughput
Proposed Design Methodology for LDPC Codecs

I- Architecture-Aware LDPC codes
- Reduced interconnect complexity
- Graph properties matched to the requirements of iterative decoding

IIa- Turbo-decoding algorithm
- Fast convergence, memory efficient

IIb- Optimized message processing unit
- Shorter bit representation
- Lookup table free, short critical path
- Small area

III- Code-programmable rate-tunable platform
- Distributed message memory
- Parallel processing using multiple MPU’s
- Efficient, scalable, dynamic routing networks

IV- Parameterized decoder core
- Low-level transistor sizing
- Power-rail scaling
- Geometric parameterization
- Power-delay-area optimization

Programmable AA-LDPC decoder core

© 2005 M. Mansour, American University of Beirut
Area Savings Achieved by Proposed Methodology

\[A(n) \text{ (mm}^2\)]

\begin{align*}
\text{State-of-the-art} & \quad \sim 369 \text{ mm}^2 \\
\text{Proposed} & \quad \sim 56 \text{ mm}^2 \\
& \quad \sim 92 \text{ mm}^2 \\
& \quad \sim 14 \text{ mm}^2
\end{align*}

© 2005 M. Mansour, American University of Beirut
Transforming the Decoding Problem

- Gallager’s LDPC decoder:

- Proposed architecture-aware LDPC decoder:
The parity-check matrix H of an AA-LDPC code is defined as:

\[
H_{D \times B} = \begin{bmatrix}
P & P & P & P & P \\
P & P & P & P & P \\
P & P & P & P & P \\
P & P & P & P & P
\end{bmatrix}
\]

- The sub-matrices are all-zero or permutation matrices of size $S (\approx \mathcal{O}(\sqrt{n}))$.
- The positions and structure of the sub-matrices are chosen to obtain large girth.
 - Examples: Combinatorial designs, cyclotomic cosets, Cayley/Ramanujan Graphs
- Architectural implications: Scale down interconnect complexity by a factor of S.
- Algorithmic implications: Transform problem into a turbo-decoding problem!
Ramanujan Graphs

 - Cayley graph $X_{RG}(q, p)$ of $\text{PGL}_2(q)$ generated by the generator set S_p
 - Both q and p are prime, and p is a QNR mod q

- **Problem**: Not much flexibility in code parameters when q is prime since $n \sim q^3$

- **Solution**: Generalize the LPS method into the case q is a composite integer m.

- When m is not prime, the generator set S_p does not generate the whole group $\text{PGL}_2(m)$ (invertible 2×2 coset matrices).

- S_p generates a subgroup L_m of $\text{PGL}_2(m)$ which contains $\text{PSL}_2(m)$ as a subgroup of index 2 depending on the prime factorization of m.

- When m is prime, L_m coincides with $\text{PGL}_2(m)$.
Ramanujan Graphs: Standard LPS Method

Generator S_p

\[
\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\]

\[a^2 + b^2 + c^2 + d^2 = p\]

$\varepsilon \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

\[\varepsilon (ad - bc) \equiv \text{unit (mod } q)\]

$PGL_2(q)$

$PGL_2(q) = P \cup Q$

If p is QNR mod q, then $S_p \subset Q$

$\forall A \in Q, s \in S, \Rightarrow A \cdot s \in P$

$\forall B \in P, s \in S, \Rightarrow B \cdot s \in Q$

$P = \text{subgroup of matrices with det. QR's mod } p$

$Q = \text{coset of matrices with det. QNR's mod } p$

Cayley graph of $PGL_2(q)$ over S_p is Ramanujan.

- order $q^3 - q$
- degree $p + 1$

[Margulis’82]
[Rosenthal-Vontobel’00]
Generalized LPS Method

Theorem 1 Let \(m = \prod_{j=1}^{h_1} q_j^{e_j} \cdot \prod_{j=h_1+1}^{h_1+h_2} q_j^{e_j} \) denote the prime factorization of \(m \) with \(h_1 \geq 1 \), such that \(p \) is a QNR modulo the left factors and a quadratic residue (QR) modulo the right factors. Define the map

\[
\tau_m : \text{PGL}_2(\mathbb{Z}_m) \to \{ \pm 1 \}^{h_1} \times \{ \pm 1 \}^{h_2}
\]

\[
A \mapsto \left[\left(\frac{\text{det}(A)}{q_1} \right), \ldots, \left(\frac{\text{det}(A)}{q_{h_1}} \right) \right| \left(\frac{\text{det}(A)}{q_{h_1+1}} \right), \ldots, \left(\frac{\text{det}(A)}{q_{h_1+h_2}} \right) \right]
\]

Then

- \(L_m = \tau_m^{-1}([\pm 1, \ldots, \pm 1 | 1, \ldots, 1]) \),
- The Cayley graph \(X(L_m, S_p) \) is bipartite, and the bipartitions are \(P_m = \text{PSL}_2(m) = \tau_m^{-1}([1, \ldots, 1 | 1, \ldots, 1]) \) and \(Q_m = \tau_m^{-1}([-1, \ldots, -1 | 1, \ldots, 1]) \),
- \(|L_m| = \frac{m^3}{2^{h_1+h_2-\nu-1}} \prod_{i=1}^{h_1+h_2} (1 - \frac{1}{q_i^2}) \) where \(\nu = 1 \) if some \(q_i = 2 \), else \(\nu = 0 \), and
- \(X(L_m, S_p) \) is Ramanujan, and \(g(X) \geq 4 \log_p (m) - 4 \log_p (2) \approx \frac{4}{3} \log_p (|L_m|) \).
Girth and Degree of Some Ramanujan Graphs

| m | p | $|L_m|$ | Girth(g) / Degree(d) |
|-----|-----|--------|-----------------------|
| 5 | 3 | 120 | $g = 6, d = 4$ |
| 7 | 5 | 336 | $g = 6, d = 6$ |
| 9 | 5 | 648 | $g = 6, d = 6$ |
| 15 | 7 | 1440 | $g = 6, d = 8$ |
| 14 | 5 | 2016 | $g = 6, d = 6$ |
| 17 | 5 | 4896 | $g = 6, d = 6$ |
| 18 | 5 | 3888 | $g = 6, d = 6$ |
| 19 | 13 | 6840 | $g = 6, d = 6$ |
| 21 | 5 | 4032 | $g = 6, d = 6$ |
| 21 | 11 | 4032 | $g = 4, d = 6$ |
| 22 | 7 | 7920 | $g = 8, d = 6$ |
| 25 | 7 | 15000 | $g = 8, d = 8$ |
| 27 | 5 | 17496 | $g = 10, d = 6$ |
| 33 | 5 | 15840 | $g = 8, d = 6$ |
| 35 | 13 | 20160 | $g = 8, d = 6$ |
| 35 | 3 | 20160 | $g = 14, d = 4$ |
| 39 | 5 | 26208 | $g = 10, d = 6$ |
| 39 | 7 | 26208 | $g = 8, d = 6$ |
| 39 | 7 | 26208 | $g = 8, d = 8$ |

© 2005 M. Mansour, American University of Beirut
Theorem 2 (\(\text{PGL}_2(\mathbb{Z}_m)\)) Let \(m\) be as defined in Theorem 1, and \(A\) be any element of \(\text{PGL}_2(\mathbb{Z}_m)\). Then \(A\) can be expressed as

\[
A = \sum_{i=1}^{h} \left(u_i A_i \cdot \prod_{j=1\atop j \neq i}^{h} q_{ij}^{e_j} \right),
\]

where \(A_i \in \text{PGL}_2(\mathbb{Z}_{q_i^{e_i}})\) has the form \((\begin{smallmatrix} 1 & b_i \\ c_i & d_i \end{smallmatrix})\) with \(d_i \neq b_i c_i\), or \((\begin{smallmatrix} a_i q_i & 1 \\ c_i & d_i \end{smallmatrix})\) with \(a_i d_i q_i \neq c_i\), for arbitrary integers \(a_i, b_i, c_i, d_i\), and appropriately determined integers \(u_1, \ldots, u_h\). Moreover, the order of \(\text{PGL}_2(\mathbb{Z}_m)\) is given by

\[
|\text{PGL}_2(\mathbb{Z}_m)| = \prod_{i=1}^{h} q_i^{3e_i} (1 - \frac{1}{q_i^2}) = m^3 \prod_{i=1}^{h} \left(1 - \frac{1}{q_i^2} \right).
\]
Theorem 3 (AA-structure) The reduced adjacency matrix $A_{RG}(m, p)$ of a Ramanujan graph $X_{RG}(m, p)$ can be partitioned into a $D \times D$ array of square matrices $W_{S \times S}$ where

$$D = m \prod_{i=1}^{h} \left(1 + \frac{1}{q_i}\right) \text{ and } S = \frac{m^2}{2^{h-\nu}} \prod_{i=1}^{h} \left(1 - \frac{1}{q_i}\right).$$

Each W is either $0_{S \times S}$ or the sum of one or more non-overlapping permutation matrices.
Example

Example 1 For $m = 9$ and $p = 5$, $X_{RG}(9, 5)$ has 648 vertices and valency 6. Its adjacency matrix $A_{RG}(9, 5)$ has size 340, and can be partitioned into a 12×12 array of submatrices of size 27 as follows:

$$A_{RG} = \begin{bmatrix}
\end{bmatrix}.$$
Vontobel-Loeliger [6] introduced a procedure for replacing the nodes of a regular graph with nodes of a factor graph.

We extend this procedure to Ramanujan-based LDPC codes obtained via the GLPS method in such a way as to preserve the AA-structure.
Transformations

<table>
<thead>
<tr>
<th>$\mathbf{A_{RG}} / X_{RG}$</th>
<th>Node splitting</th>
<th>Edge splitting</th>
<th>Node replacement + Edge splitting</th>
<th>Edge merging</th>
<th>Edge merging + Node replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$x_1 x_2$</td>
<td>$n_1 n_2 n_3 n_4 n_5 n_6$</td>
<td>$n_1 n_2 n_3 d e f$</td>
<td>$n_1 n_2 n_3$</td>
<td>$n_1 d e f$</td>
</tr>
<tr>
<td>a</td>
<td>P_1</td>
<td>P_1</td>
<td>P_1</td>
<td>a</td>
<td>P_1</td>
</tr>
<tr>
<td>b</td>
<td>P_2</td>
<td>P_2</td>
<td>P_2</td>
<td>b</td>
<td>P_2</td>
</tr>
<tr>
<td>c</td>
<td>P_3</td>
<td>P_3</td>
<td>P_3</td>
<td>c</td>
<td>P_3</td>
</tr>
<tr>
<td>d</td>
<td>P_4</td>
<td>P_4</td>
<td>P_4</td>
<td>d</td>
<td>P_4</td>
</tr>
<tr>
<td>e</td>
<td>P_5</td>
<td>P_5</td>
<td>P_5</td>
<td>e</td>
<td>P_5</td>
</tr>
<tr>
<td>f</td>
<td>P_6</td>
<td>P_6</td>
<td>P_6</td>
<td>f</td>
<td>P_6</td>
</tr>
<tr>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
</tr>
<tr>
<td>x_2</td>
<td>x_2</td>
<td>x_2</td>
<td>x_2</td>
<td>x_2</td>
<td>x_2</td>
</tr>
<tr>
<td>n_1</td>
<td>n_1</td>
<td>n_1</td>
<td>n_1</td>
<td>n_1</td>
<td>n_1</td>
</tr>
<tr>
<td>n_2</td>
<td>n_2</td>
<td>n_2</td>
<td>n_2</td>
<td>n_2</td>
<td>n_2</td>
</tr>
<tr>
<td>n_3</td>
<td>n_3</td>
<td>n_3</td>
<td>n_3</td>
<td>n_3</td>
<td>n_3</td>
</tr>
<tr>
<td>n_4</td>
<td>n_4</td>
<td>n_4</td>
<td>n_4</td>
<td>n_4</td>
<td>n_4</td>
</tr>
<tr>
<td>n_5</td>
<td>n_5</td>
<td>n_5</td>
<td>n_5</td>
<td>n_5</td>
<td>n_5</td>
</tr>
<tr>
<td>n_6</td>
<td>n_6</td>
<td>n_6</td>
<td>n_6</td>
<td>n_6</td>
<td>n_6</td>
</tr>
</tbody>
</table>

© 2005 M. Mansour, American University of Beirut
Performance of Some AA-LDPC Codes

Rate 0.33
Rate 0.5
128 iterations
20,000 frames

© 2005 M. Mansour, American University of Beirut
II-Turbo-Decoding of AA-LDPC Codes

- An AA-LDPC code can be viewed as a concatenation of super-codes, each of which is a direct-sum of single-parity-check codes.

- The turbo-decoding algorithm can be applied to decode LDPC codes instead of Gallager’s TPMP algorithm.

- Advantages: Process one type of messages, faster convergence, 75% memory savings, interleavers easy to implement.

Parameters: $S = 4$, $D = 3$, $B = 4$, $m = 12$, $n = 16$
Simpler Flow of Messages in Factor Graph

Turbo-code decomposition

Convolutional code

\(C^1 \)

SISO

Interleaver \(\pi_1 \)

\(\Lambda \)

\(C^2 \)

Interleaver \(\pi_2 \)

\(\Lambda \)

\(C^3 \)

Interleaver \(\pi_3 \)

(channel values)

Architecture-aware decomposition

(sub-code)

\(\pi_{11} \)

\(\pi_{12} \)

\(\pi_{13} \)

\(\pi_{14} \)

\(\pi_{21} \)

\(\pi_{22} \)

\(\pi_{23} \)

\(\pi_{24} \)

\(\pi_{31} \)

\(\pi_{32} \)

\(\pi_{33} \)

\(\pi_{34} \)
Dual Extrinsic Principle: Reduced Memory Requirements

- Outer extrinsics
- Inner extrinsics

![Diagram](attachment:image.png)
Convergence Rate of the TDMP Algorithm

- Length 4200, rate 0.5, regular (3,6)-AA-LDPC code
- Use the BCJR algorithm in differential form on the syndrome trellis of an even parity-check code [ISLPED’02].

- Kernel equation: Max-quartet approximation with NO lookup tables

\[
Q(x, y) = \max(x, y) - \max(x + y, 0) + \max\left(\frac{5}{8} - \frac{|x - y|}{4}, 0\right) - \max\left(\frac{5}{8} - \frac{|x + y|}{4}, 0\right)
\]

- Key update equations:

\[
\Delta \alpha' = Q(\Delta \alpha, \lambda), \quad \Delta \beta' = Q(\Delta \beta, \lambda), \\
\Lambda = Q(\Delta \alpha, \Delta \beta)
\]
Simple and Accurate Approximation

\[\delta(u) = \max\left(\frac{5}{8} - \frac{|u|}{4}, 0\right) \]

\[Q(x, y) \]

\[E_b/N_0 \text{ [dB]} \]

\[\text{BER} \]

Copyright © 2005 M. Mansour, American University of Beirut
SISO Message Processing Units

- **Parallel implementation:**

- **Serial implementation:**
III-Architecture: Programmable and Tunable Decoding Platform

- Scalable decoder architecture for the ensemble of $[D, B, S]$-AA-LDPC codes
Core-based IC design methodologies: Tradeoff between the high quality of full-custom designs and the short design cycle time of synthesis-based designs.

Communication systems:
- Applications, standards, and process technologies change and evolve towards optimum system energy and throughput efficiencies.
- Desirable: portability across technology generations and predictability of design quality

Approach: Build a core-generator based on parameterized layout libraries
- Easy to upgrade
- Instantiate cells with virtually any size

Stack a parameterized macro-cell (PMC) library on top of parameterized leaf-cell (PLC) containing layout of all building blocks of a TDMP AA-LDPC decoder.
- Novelty: Optimize blocks by performing low-level transistor sizing, power-rail scaling, and other geometric modifications with minimal effort.
Parameterized Layout Cell Libraries

- Includes cells ranging from inverters to full adders (with saturation arithmetic), SRAM cells, and switch cells
- Cells parameterized by scaling vectors, power-line sizing, and other geometric attributes
- Current model developed for delay, power, reliability characterization

PMC library

- Logic Units
 - Q function
 - Serial SISO MPU
 - Parallel SISO MPU
 - Periphery blocks
- Networks
 - Omega network
 - Beneš network
 - Other topologies
- Memory
 - Single-port λ-memory
 - Single-port H-memory
 - Dual-port π-memory
 - Dual-port Γ-memory

PLC library

Technology file
Examples of Parameterized Macro Cells

- MPU (top), Ω-Network (left), Γ-Memory (right)
LDPC Decoder Chip Implementation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datapath</td>
<td>4-bit</td>
</tr>
<tr>
<td>Code length</td>
<td>2048</td>
</tr>
<tr>
<td>Code rate</td>
<td>0.5-0.875</td>
</tr>
<tr>
<td>Frequency</td>
<td>125 MHz</td>
</tr>
<tr>
<td>Throughput</td>
<td>6.4 Gbps</td>
</tr>
<tr>
<td>IO Pins</td>
<td>76</td>
</tr>
<tr>
<td>Area</td>
<td>14.3 mm²</td>
</tr>
<tr>
<td>Power</td>
<td>787 mW</td>
</tr>
<tr>
<td>Technology</td>
<td>0.18 μm, 1.8 V TSMC CMOS</td>
</tr>
<tr>
<td>Foundry</td>
<td>MOSIS</td>
</tr>
</tbody>
</table>

© 2005 M. Mansour, American University of Beirut
Die Micrograph of the Decoder Chip
- Regular (3,6)-LDPC code, length 2048, rate 0.5
- 0.18 μm, 1.8 V TSMC CMOS technology
Generalizations to Repeat-Accumulate Codes

- Same ideas can be applied to Repeat-Accumulate codes introduced by Divsalar-Jin-McEliece (1998)

(c) IRA Encoder

(d) IRA Tanner graph

(e) Parity-check matrix
Generalizations to Repeat-Accumulate Codes (cont’d)

- Architecture-aware parity-check matrix
 - Base systematic part obtained from combinatorial designs, cage graphs, Ramanujan graphs

\[
H_{N \times (N+K)} = \begin{bmatrix}
I_{\pi_1} & I_{\pi_2} & I_{\pi_3} & I_{\pi_4} & I & I \\
I_{\pi_5} & I_{\pi_6} & I_{\pi_7} & I_{\pi_8} & I & I \\
I_{\pi_9} & I_{\pi_{10}} & I_{\pi_{11}} & I_{\pi_{12}} & I & I \\
\end{bmatrix}
\]

\(\pi_1, \pi_2, \ldots, \pi_{12}\) are indices for the information parity matrix.

© 2005 M. Mansour, American University of Beirut
Conclusions

- Decoders for LDPC codes require an order of magnitude more memory than turbo codes, and their randomness creates an on-chip interconnect bottleneck.
- Existing techniques address these issues at the architectural level, result in limited effects.
- We addressed the problems of memory overhead and interconnect bottleneck at four levels of abstraction:
 - Code design: Architecture-aware LDPC codes
 - Decoding algorithm:
 * Proposed a new turbo-decoding algorithm that reduces memory requirements by > 75%, and improves decoding throughput.
 * Proposed a reduced-complexity message computation mechanism
 - Architecture: Proposed a programmable and scalable TDMP decoder architecture
 - Layout: Core-based design using PMC layout library
- LDPC decoder chip implementation
References

