Offenlegungsschrift

Aktenzeichen: 10 2008 007 446.2
Anmeldetag: 01.02.2008
Offenlegungstag: 06.08.2009

Rheinisch-Westfälische Technische Hochschule
Aachen, 52062 Aachen, DE

Vertreter:
COHAUSZ DAWIDOWICZ HANNIG & SOZIEN,
40237 Düsseldorf

Erfinder:
Liermann, Matthias, Dipl.-Ing., 52066 Aachen, DE;
Stammen, Christian, Dr.-Ing., 52074 Aachen, DE

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:
DE 10 2007 016250 A1
DE 34 41 128 A1
DE 29 14 626 A1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Rechercheantrag gemäß § 43 Abs. 1 Satz 1 PatG ist gestellt.

Bezeichnung: Verfahren und Vorrichtung zum Verzögern einer bewegten Masse

Zusammenfassung: Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Verzögern einer bewegten Masse mit wenigstens einem Reibbelag und einem hydraulischen Bremsaktor mit dem der wenigstens eine Reibbelag an eine Bremsfläche andrückbar ist, wobei bei einem Reibkontakt der wenigstens eine Reibbelag mit der Bremsfläche mittbewegbar ist und durch den wenigstens einen Reibbelag direkt oder indirekt über Verbindungsmittel eine von der Stärke der Reibkraft abhängige Kraft auf einen hydraulischen Druckerzeuger ausübbar ist, mit dem in einer hydraulischen Leitung ein von der Kraft abhängiger Versorgungsdruck erzeugbar ist, bei der/dem an die hydraulische Leitung (6) zwei hydraulische Druckerzeuger (5a, 5b) angeschlossen sind und mit dem wenigstens einen Reibbelag (2) abhängig von der Richtung seiner Bewegung bei einem Reibkontakt eine Kraft nur auf einen der beiden Druckerzeuger (5a, 5b) ausübbar ist. Die Erfindung betrifft weiterhin eine Vorrichtung und ein Verfahren zum Verzögern einer bewegten Masse mit wenigstens einem Reibbelag und einem hydraulischen Bremsaktor mit dem der wenigstens eine Reibbelag an eine Bremsfläche andrückbar ist, wobei bei einem Reibkontakt der wenigstens eine Reibbelag mit der Bremsfläche mittbewegbar ist und durch den wenigstens einen Reibbelag direkt oder indirekt über Verbindungsmittel eine von der Stärke der Reibkraft abhängige Kraft auf wenigstens einen hydraulischen Druckerzeuger ausübbar ist, mit dem in einer hydraulischen Leitung ein von der Kraft...
Beschreibung

[0004] Mit derartigen Vorrichtungen bzw. Verfahren kann eine selbstverstärkende hydraulische Bremse realisiert werden, ohne dass eine separate externe Energiezufuhr nötig ist, wobei eine gewünschte Bremsverzögerung selbst bei wechselndem Zustand der Reibbeläge exakt und sicher umgesetzt werden kann.

[0006] Beispielsweise bei konventionellen Fahrzeugen erfolgt die Leistungsversorgung und die Betätigung einer auf Reibung beruhenden Bremse üblicherweise durch ein Fluid, wie beispielsweise Luft oder Hydrauliköl. Hierbei ist es als üblich bekannt, die Ansteuerung der Bremsen zumindest zum Teil auch elektrisch zu unterstützen.

[0007] Bei pneumatischen Antrieben werden dabei beispielsweise große Kolbenflächen benötigt, wodurch sich eine nur geringe Dynamik ergibt und wobei die Steuerbarkeit der Bremse unwesentlich beeinträchtigt ausfällt. Gleichzeitig weist eine pneumatische Bremstechnik ein hohes Gewicht auf, wobei zusätzlich die benötigten Kompressoren ein hohes Gewicht erzeugen und die benötigten Versorgungs- und Steuerleitungen einen insgesamt großen Raum einnehmen.

[0011] Der Ansatz einer selbstverstärkenden hydraulischen Bremse ist es, einzig die Abstückschaft der Bremse gegenüber einem Gestell der bewegten Masse, wie beispielsweise dem Fahrwerk eines Fahrzeugs als hydraulische Energiequelle für die Bremskraftverstärkerzeugung zu nutzen. Wirkt beispielsweise eine Reibkraft auf den Bremsbelag, so kann diese beispielsweise durch den Kolben eines Hydraulikzyinders auf eine hydraulische Druckflüssigkeit abgestützt werden. Der so erzeugte Druckanstieg in der Druckflüssigkeit kann dabei derart geschaltet wer-
den, dass er auf den Bremskolben wirkt und dadurch wiederum die in den Reibkontakt eingebaute Normalkraft beeinflusst. Durch eine geeignete Wahl des Flächenverhältnisses zwischen einem solchen Hydraulizylinder und einem Bremszylinder kann dabei eine Selbstverstärkung erreicht werden, die bevorzugterweise auch der hier weiterhin beschriebenen Erfindung zugrunde liegen kann.

[0012] Das Dokument DE 34 41 128 beschreibt beispielsweise eine Vorrichtung der eingangs genannten Art, bei der ein Bremszylinder in Drehrichtung einer Bremscheibe verschiebbar gelagert ist und bei einer einsetzenden Bremsung mitbewegt wird, wobei ein am Bremszylinder angebrachter Kolben eines Hydraulizylinders betätigt wird und einen hydraulischen Druck aufbaut, der durch Kanäle sich bis in die Kolbenkammer des hydraulischen Betätigungszylinders des Bremszylinders fortlässt und so zu einer verstärkten Betätigung der Bremse führt.

[0013] Nachteilig bei diesem hier beschriebenen System ist es, dass die offene Konstruktion nur in einer der Drehrichtungen der Bremscheibe wirkt und dass darüber hinaus der durch den Hilfskolben aufgebaute hydraulische Druck nicht nur unmittelbar ohne weitere hydraulische Schaltungen im Bremszylinder wirkt, sondern aufgrund der offenenartigen hydraulischen Leitungsanordnung auch rückwirkend auf ein Zylinderkolbenaggregat, welches durch ein Fußpedal betätigt ist, so dass bei der einsetzenden automatischen Verstärkung gleichzeitig auch das Fußpedal zurückgedrückt wird, wobei diese Rückbewegung zunächst kompensierend gegen die Druckerhöhung wirkt.

[0017] So ist es hierbei als erfindungsgemäß besonders wesentlich anzusehen, dass bei einer Kraftausübung vom Reibbelag direkt oder indirekt über Verbindungsmittel die von der Reibkraft abhängige Kraft ausschließlich nur auf einen der Druckerzeuger ausgeübt wird und bevorzugt der andere, in der Vorrichtung vorhandene Druckerzeuger hiervon völlig unbeinflusst bleibt. Um dies zu erzielen, kann es in einer erfindungsgemäß bevorzugten Ausführung vorgesehen sein, dass der wenigstens eine Reibbelag bei einem Reibkontakt mit der Bremsflächen zu einem der beiden Druckerzeuger keinerlei Wirkverbindung aufweist.

[0018] Beispielsweise kann dabei in der Vorrichtung eine Ursprungsstellung gegeben sein, in welcher kein Reibkontakt zwischen Reibbelag und Bremsflächen vorherrscht und der wenigstens eine Reibbelag direkt oder indirekt über Verbindungsmittel mit beiden Druckerzeugern eine lose bzw. lösbare Wirkverbindung aufweist, die bei einem Reibkontakt zu einem der beiden Druckerzeuger gelöst wird und somit nur zu dem anderen der beiden Druckerzeuger weiterhin besteht.

[0019] Alternativ kann es hier auch vorgesehen sein, dass der wenigstens eine Reibbelag zu keinem der Druckerzeuger in dieser genannten Ursprungsstellung eine Wirkverbindung aufweist und bei einem Reibkontakt mit einem der beiden Druckerzeuger direkt oder indirekt über Verbindungsstück erstmals eine Wirkverbindung hergestellt wird. Da in der zweiten genannten Alternative in der Ursprungsstellung noch keine, auch keine lose/lösbare Wirkverbindung zu einem der beiden Druckerzeuger besteht, sondern diese vorherrschenden Druckbelags hervorgerufen wird, kommt es zu einem Spiel, d. h. einer gewissen Bewegungsweite, die der Reibbelag zurücklegt, bis dass eine erstmalige Wirkverbindung zum Druckerzeuger hergestellt ist, so dass gegebenenfalls je nach Anforderung die eingangs erstgenannte Alternative, bei der bereits eine lösbare Wirkverbindung schon in der Ursprungsstellung besteht,
bevorzugt ist.

[0021] Unter einem Druckerzeuger wird darüber hinaus jedes mögliche Element oder Vorrichtung verstanden, das geeignet ist, aufgrund einer Kraftausübung auf dieses Element bzw. die Vorrichtung einen hydraulischen Druck in einem Leitungssystem zu erzeugen bzw. zu erhöhen.

[0023] Da es erfindungsgemäß als besonders wesentlich für die Konstruktion einfach angesehen wird, dass die beiden Druckerzeuger, insbesondere deren Zylinderräume an dieselbe hydraulische Leitung angeschlossen sind, so dass entweder der eine Druckerzeuger oder der andere Druckerzeuger in Abhängigkeit von der Bewegungsrichtung der bewegten Masse bzw. der Bremsfläche relativ zum Bremsbelag einen Druck in dieser Leitung aufbaut bzw. erhöht, wird es als erfindungsgemäß besonders vorteilhaft angesehen, dass das wenigstens eine Zylinderkolbenaggregat jedes Druckerzeugers ausgehend von einer Ursprungsstellung ohne Reibschluss nur zusammenschiebar, also das Volumen des jeweiligen Zylinderraumes verringert ist.

[0025] Eine gegenläufige Bewegung des nicht wirrkombinerten Druckerzeugers kann in einer bevorzugten Ausführung beispielsweise dadurch verhindert werden, dass das wenigstens eine Zylinderkolbenaggregat jedes Druckerzeugers, bei mehreren jedes Zylinderkolbenaggregat, einen Anschlag aufweist, mit welchem die Ausfahrate des Kolbens relativ zum Zylinder begrenzt ist. Hierbei wird die Begrenzung der Ausfahrate bevorzugt derart vorgenommen sein, dass die maximale Ausfahrate erreicht ist, wenn die Zylinderkolbenaggregate sich in einem Zustand der Bremsvorrichtung ohne Reibkontakt in einer Ursprungsstellung befinden.

[0027] Es wird somit erfindungsgemäß in besonders vorteilhafter Ausgestaltung erreicht, dass egal in welcher Richtung sich die bewegte Masse und damit die Bremsfläche gegenüber dem Reibbelag bewegt, immer nur einer der beiden Druckerzeuger mit einer Kraft beansprucht wird und somit immer einer der beiden Druckerzeuger in der hydraulischen Leitung einen gegenüber der Ursprungsstellung erhöhten hydraulischen Druck erzeugt, so dass durch eine bevorzugt eingesetzte Anordnung von gegebenenfalls mehreren hydraulischen Schaltmitteln dieser durch einen der beiden Druckerzeuger in der hydraulischen

[0028] Es kann weiterhin vorgesehen sein, dass der Reibbelag und/oder dessen Haltevorrichtung bei nachlassender oder auch ganz aufgehobener Reibkraft, durch eine Kraftbeaufschlagung wieder in die Ursprungsstellung zurückstellbar ist bzw. verfahrensgemäß gestellt wird. Hierfür kann beispielsweise in oder an einem Druckerzeuger bzw. Zylinderkolbenaggregat eine Feder angeordnet sein, insbesondere eine Druckfeder, die zwischen Kolbenstange und Zylinder abgestützt sein kann. Es kann dabei vorgesehen sein, dass ein Zylinderkolbenaggregat bei nachlassender bzw. ganz aufgehobener Reibkraft durch die Zurückstellung in die Ursprungsstellung eine maximale ausgefahren und insbesondere durch den eingangs genannten Anschlag begrenzte Stellung einnimmt. Ein Nachlassen oder vollständiges Aufheben der Reibkraft zwischen Reibbelag und Bremsfläche kann z. B. erreicht werden, wenn der Druck im Bremsaktor durch die genannten Schaltmittel abgesehen/reduziert wird, was durch Ansteuerung von Ventilen der genannten Schaltmittel erfolgen kann, insbesondere auch im Rahmen einer später noch beschriebenen rein hydraulischen Regelung.

[0029] Um ein Rückströmen von Hydraulikfluid bei einer Rückstellung eines Zylinderkolbenaggregates in seine Ursprungsstellung in dieses Zylinderkolbenaggregat hinein zu ermöglichen, kann es beispielsweise vorgesehen sein, dass an die hydraulische Leitung, in welcher der Versorgungsdruck erzeugt wird, über ein Rückschlagventil, welches bei Druckerhöhung in der gemeinsamen Hydraulikleitung automatisch schließt, ein Versorgungstank zur Bevorratung von Hydraulikfluid angeschlossen ist, so dass aus diesem Tank zwecks Druckausgleich beim Einnehmen der Ursprungsstellung Hydraulikfluid nachgesaugt werden kann.

[0031] Nachfolgend wird weiterhin eine Vorrichtung bzw. ein Verfahren beschrieben, welches mit der eingangs genannten Erfindung idealerweise kombinierbar ist, jedoch auch mit jeglicher anderer Art der Druckerzeugung, und insbesondere bei einer selbstverstärkenden hydraulischen Bremse eingesetzt werden kann, um den wirkenden Bremsdruck im Bremsaktor zu regeln.

[0032] Die nachfolgend beschriebene Ausgestaltung der erfindungsgemäßen Verschaltung einer Bremsvorrichtung ist daher nicht auf die zuvor genannte Bremsvorrichtung in der Vorrichtung oder verfahrensmäßigen Ausgestaltung beschränkt jedoch mit dieser einsetzbar.

[0034] Die weiterhin beschriebene Erfindung ist dabei dadurch ausgezeichnet, dass ein Steuerdruckgeber vorgesehen ist, mit dem ein hydraulischer Steuerdruck erzeugbar ist, der an den Bremsaktor schaltbar ist, zur Erzeugung eines anfänglichen Reibschlusses. Diese Aufschaltung des Steuerdruckes an den Bremsaktor kann direkt oder ggfs. nur über ein Rückschlagventil oder alternativ auch über die weiterhin beschriebene Schaltvorrichtung erfolgen. Der Steuerdruck ist weiterhin vom Bremsaktor abschaltbar, sobald ein Vergleichsdruck den Steuerdruck übersteigt. Es kann dann vorgesehen sein, dass nach dieser anfänglichen Bremsgeleitungszeit der hy-
draulische Druck im Bremsaktor mittels der Schaltvorrichtung regelbar ist in Abhängigkeit von Kräften, die durch den Versorgungsdruk und den Steuerdruck auf die Schaltvorrichtung ausgeübt sind bzw. werden. Die Positionen, welche die Schaltvorrichtung einnehmen kann, sind somit erfindungsgemäß besonders bevorzugt ausschließlich durch diese Kräfte bestimmt, ggfs. in Zusammenwirkung zur Erzeugung einer Offset-Kraftbelastung auf die Schaltvorrichtung. Demnach kann es sich z. B. um hydraulisch geschaltete Stellventile handeln.

[0037] So ist es erfindungsgemäß vorgesehen, dass der erzeugte Steuerdruck mittels der erfindungsgemäßen Vorrichtung, beispielsweise über entsprechende hydraulische Verschaltungen, an den Bremsaktor geschaltet werden kann. Wird demnach ein solcher Steuerdruck, z. B. durch ein Fußpedal und daran angeschlossenes Zylinderkolbenaggregat erzeugt, so wird ein Druck im Bremsaktor aufgebaut, mittels dem der Reibbelag an die Bremsfläche ange- stellt wird und einen initialen Reibkontakt erzeugt.

[0038] Es erfolgt sodann eine erfindungsgemäße Selbstverstärkung dadurch, dass eine Verlagerung des Reibbelages durch Mitbewegung in die Richtung der Bremsfläche erzeugt wird, die zu einer Druckerhöhung aufgrund der Kraftausübung auf wenigstens einen hydraulischen Druckerzeuger beliebiger Art, insbesondere der eingangs genannten Art, hervorge- rufen wird.

[0041] Wird demnach aufgrund der prinzipbedingten Selbstverstärkung ein Druck erzeugt, der größer ist als der Steuerdruck, so erfolgt in allen genannten Fällen eine Umschaltung, so dass sodann nicht mehr der anfängliche Steuerdruck, der z. B. von einem Be- nutzer der Bremsvorrichtung erzeugt wurde, zur Kompression des Reibkontaktes verwendet wird, sondern der in der Bremsvorrichtung selbst erzeugte Druck.

[0042] Dabei ist es nun erfindungsgemäß vorgesehen, dass der hydraulische Druck im Bremsaktor mittels einer erfindungsgemäßen Schaltvorrichtung regelbar ist bzw. geregelt wird in Abhängigkeit von Kräften, die durch den Versorgungsdruk und den Steuerdruck auf die Schaltvorrichtung ausgeübt sind. Da der Steuerdruck beispielsweise von außen aufge- prägt wird, gegebenenfalls auch durch einen Benutzer der Versorgungsdruk systemintern aufgrund Selbstverstärkung erzeugt wird, kann eine derartige erfindungsgemäß Schaltvorrichtung vollständig auf- ark von externen elektrischen Hilfenergien arbeiten, da lediglich diese Drücke verwendet werden, um Kräfte zu erzeugen, die auf die Schaltvorrichtung wirken und Schaltvorgänge hervorrufen, entweder diskrete Schaltvorgänge oder bevorzugt proportionale in Abhängigkeit der Kräfteverhältnisse.

[0044] Beispielsweise kann es vorgesehen sein, dass die Schaltvorrichtung zwei Ventile umfasst, deren jeweilige Ventilstellung durch eine Kraft einstellbar ist, die sich ergibt aus der Summe zumindest der durch den Versorgungsdruck und den Steu erdruck auf das jeweilige Ventil ausgeübten, einander entgegen gesetzten Kräfte, insbesondere noch in Verbindung mit einer weiteren Kraft, die sich z. B. durch eine konstante Federbelastung des Ventils ergibt. So kann beispielsweise ein derartiges Ventil durch eine Kraft, die durch den Steu erdruck erzeugt wird, in eine Richtung bewegt werden und durch eine Kraft aufgrund des Versorgungsdrucks in eine entgegengesetzte Richtung. So kommt es auf die Kräfteverhältnisse an, die durch die beiden Kräfte erzeugt werden und welche bestimmen, welche Position das Ventil einnimmt, wobei das Kraftverhältnis zwischen den von Versorgungsdruck und Steu erdruck erzeug ten Kräften wie zuvor benannt durch eine zusätzliche, von den genannten Drücken unabhängige Kraftbe lastung, mit einem Offset in eine gewünschte Rich tung versehen sein kann. Insbesondere kann eine solche, immer vorhandene Kraftbelastung, die durch eine Feder erzeugt werden kann, vorgesehen sein, um ohne wirkende Drücke und damit unter Entfall der hierdurch erzeugten Kräfte die Schaltvorrichtung in eine Ursprungposition zu stellen.

[0045] Erfindungsgemäß kann es so vorgesehen sein, dass mit steigendem Steu erdruck eines der Ventile, beispielsweise ein solches, welches den Versorgungsdruck auf den Bremsa ktor schaltet, öff net oder zumindest weiter öffnet und das andere Ventil welches den Bremsa ktor an ein Reservoir schaltet schließt, zumindest weiter schließt.

[0046] So wird in Abhängigkeit des Steu erdruckes der Versorgungsdruck mehr oder weniger auf den Bremsa ktor aufgeschaltet und bewirkt dort eine weitere oder geringere Verstärkung der Bremswirkung, je nachdem wie sich durch den aufgebrachten Steu erdruck das Verhältnis der durch die beiden Drücke erzeugten Kräfte einstellt.

[0048] Das weitere Ventil der Schaltvorrichtung, mit welchem der Bremsa ktor auf das Reservoir schaltbar ist, kann dabei bei fehlendem Steu erdruck durch eine Kraftbeaufschlagung in die offene Stellung gesteuert werden, z. B. gesteuert sein und durch ansteigenden Druck geschlossen werden, z. B. schließbar sein.

[0049] Es werden so in Abhängigkeit von Steuer und Versorgungsdruck, bzw. den dadurch erzeugten Kräften, ggf. unter Berücksichtigung eines Kraftoff sets, die beiden Ventile zwischen Ihren jeweiligen offenen und geschlossenen Stellungen diskret oder proportional hin und her geschoben, so dass hierdurch eine Bremskraftregelung in Abhängigkeit des Steu erdruckes erfolgen kann.

[0050] In einer besonders bevorzugten Ausführung ist es dabei vorgesehen, dass bei denselben Verhältnissen von Steu erdruck und Versorgungsdruck, die beispielsweise dadurch erzeugbar sind, dass Steu er und Versorgungsdruck an beiden Ventilen, bzw. an den diese betätigen Zylinderkolbenaggregate in identischer Weise anliegen, die an den beiden Ventilen wirksamen Kräfte jedoch unterschiedlich sind.

[0052] Da Steu erdruck und Versorgungsdruck gleichsam jeweils auf die beiden genannten Ventile einwirken, um die Position der Ventile festzulegen,
kann somit durch die Flächenverhältnisse der Kolbenflächen der jeweils verwendeten Zylinderkolbenaggregate zum einen steuer- und zum anderen versorgungsdruckseitig ein Druckverstärkungsverhältnis der gesamten Bremsanlage definiert werden. Es besteht demnach so die Möglichkeit die Wirkung eines Bremskraftverstärkers auf rein mechanisch hydraulische Art und Weise ohne zusätzliche Hilfsenergien in der erfindungsgemäßen Anlage zu realisieren.

[0053] Ausführungsbeispiele der Erfindung sind in den nachfolgenden Figuren dargestellt.

[0054] Es zeigen hierbei:

[0055] **Fig. 1 bis Fig. 6**: ein erstes Ausführungsbeispiel einer erfindungsgemäßen Schaltvorrichtung zur Bremskraftregelung in verschiedenen Betätigungstadien und

[0056] **Fig. 7**: eine zweite Ausführung der erfindungsgemäßen Schaltvorrichtung in einer Ausgangsstellung.

[0057] Sämtliche Figuren zeigen hierbei die Kombination der beiden eingangs genannten erfindungsgemäßen Vorrichtungen und Verfahren, d.h. zum einen die richtungsunabhängige Versorgungsdruckerzeugung durch zwei Druckerzeuger, sowie die erfindungsgemäße Bremskraftregelung.

[0058] Die **Fig. 1** zeigt in einer Ausgangsstellung eine Bremsvorrichtung mit einem Bremsakor 1, mittels dem Reibbeläge 2 an eine Brems scheibe 3 anstellbar sind, so dass ein Reibkontakt entsteht. Hierfür wird ein entsprechender hydraulischer Druck im Zylinderraum des Bremsakors 1 benötigt. Sofern dieser Druck vorliegt und der Reibkontakt entsteht, wird bei einer hier beispielhaft angenommenen Relativbewegung zwischen Brems scheibe und Reibbelag von links nach rechts der Brems sattel 4 in Richtung auf den rechtsseitig dargestellten Druckerzeuger 5a bewegt, der als Zylinderkolbenaggregate ausgebildet ist, dessen Kolbenstange lose am Brems sattel 4 und damit indirekt am Bremsbelag 2 anliegt. Die nach rechts verschobene Position ist beispielsweise in der **Fig. 3** gezeigt.

[0059] Der gegenüberliegende Druckerzeuger 5b kommt dabei gänzlich außer Wirkung mit dem Brems sattel 4 bzw. dem Bremsbelag 2 und belebt dabei auch in seiner Ausfahrtseiten durch einen nicht dargestellten Anschlag begrenzt, so dass sich das interne Volumen des ebenfalls als Zylinderkolbenaggregat ausgebildeten Druckerzeugers 5b sich nicht ändert. Es kann so in der hydraulischen Leitung 6, die die Zylinderräume beider Druckerzeuger 5a und 5b verbindet, ein erhöhter Druck aufgebaut werden, der abhängig ist von der Kraft mittels welcher der Brems sattel 4 auf den Druckerzeuger 5a oder bei anderer Bewegungsrichtung auf den Druckerzeuger 5b ein wirkt.

[0060] Der somit erfindungsgemäß erzeugte Versorgungsdruck in der Leitung 6 kann dabei mit der weiterhin hier dargestellten erfindungsgemäßen Ver schaltung geregelt werden, was nachfolgend näher erläutert wird.

[0061] Hierfür weist die erfindungsgemäße Ver schaltung zwei Ventile V1 und V2 auf, die zwischen zwei Positionen, nämlich jeweils der geschlossenen bzw. der durchgängigen Position proportional einstellbar sind, dadurch dass ein Ventilstellglied durch eine von außen wirkende Kraftbeaufschlagung verschoben wird.

[0062] Hierbei kann durch das Ventil V1 je nach dessen Position der in der Leitung 6 vorherrschende Versorgungsdruck über das Rückschlagventil 16 und die Leitungen 7 und 8 an den Bremsakor 1 angeschaltet oder abgeschaltet bzw. proportionale Stellungen zwischen diesen beiden Extremen geschaltet werden.

[0063] Durch das gegen sinnig orientierte Ventil V2 kann andererseits der im Bremsakor 1 vorherrschende hydraulische Druck über die Leitung 8 und die Leitung 9 an einen Tank R geschaltet werden, bzw. es können zwischen der maximalen Offen- und Geschlossenenschaltung des Ventils ebenso proportionale Zwischenstellungen eingenommen werden.

[0064] Bei der erfindungsgemäßen Vorrichtung bzw. dem Verfahren ist es vorgesehen, einen Steuerdruck mittels eines Zylinderkolbenaggregates 10 zu erzeugen, der in dieser Ausführung über eine Drossel 11 und ein in dieser Richtung durchgängiges Rück schlagventil 12 auf die Leitung 7 wirkt und somit ebenso wie der Versorgungsdruck am Ventil V1 anliegen kann, je nach Schaltstellung der beiden gegen sinnigen Rückschlagventile 16 und 17. Das Ventil V1 ist in der drucklosen Ursprungsstellung, also ohne anliegenden Steuerdruck geschlossen, das Ventil V2 hingegen geöffnet, so dass der Bremsakor drucklos ist, da dieser mit dem drucklosen Reservoir R über dieses Ventil V2 verbunden ist.

[0065] Der erzeugte Steuerdruck wirkt in dieser Ausführung über eine Leitung 14 ebenso auf ein nicht gezeigtes ggf. internes Zylinderkolbenaggregat des Ventil V2 mit einer Kolbenfläche von (X + X0)·A, so dass eine Kraft von (X + X0)·A-Steuerdruk auf das Ventil V2 ausübt wird, um dieses Ventil entgegen der Federkraft der Feder 15 von der ursprünglich offenen Stellung in Richtung der geschlossenen Stellung zu verschieben. Gleichsam wirkt der Steuerdruck auch auf ein Zylinderkolbenaggregat mit der Fläche X·A am Ventil V1, um dieses mit der Kraft
X A-Steuerrudruck und damit mit einer gegenüber dem Ventil V2 geringeren wirkenden Kraft entgegen der Feder 13 von der geschlossenen in Richtung der geöffneten Stellung zu verschieben.

Aufgrund der unterschiedlichen Flächenverhältnisse die bei den kraftbeaufschlagenden Zylinderkolbenaggregaten an den Ventilen V1 und V2 vorherrschen, wird das Ventil V2 bei steigendem Steuerdruck gegenüber dem Ventil V1 voreilig sein, sofern die Kräfte, die durch die Federn 13 und 15 ausgeübt werden, gleich sind. Es wir daher zunächst das Ventil V2 geschlossen bzw. in die Richtung der geschlossenen Stellung verschoben, so dass der Bremsaktor vom Tank zunehmend getrennt wird und das Ventil V1 geöffnet bzw. in die offene Richtung verschoben, so dass der Steuerdruck hier über das Rückschlagventil 12 die Leitung 7 und die Leitung 8 auf den Bremsaktor 1 einwirken kann, um so den Reibbelag 2 an die Bremsscheibe 3 anzustellen. Diese Stellung der Ventile ist in der Fig. 2 gezeigt, wobei, da der Steuerdruck jetzt größer ist als der Versorgungsdruck, das Rückschlagventil 12 geöffnet und Rückschlagventil 16 geschlossen ist, so dass sich der Steuerdruck vom Aggregat 10 nur in Richtung des Ventils V1 ausbreiten kann.

Durch den sodann erfolgten Reibkontakt erfolgt ein Mitwirken der Bremszattels 4 in Richtung der Bewegungsrichtung der Bremsscheibe 3 und somit bei einer Mitbewegung in die rechte Richtung auf den Druckerzeuger 5a zu, auf dessen Kolbenstange eine von der Reibkraft abhängige Kraft ausgeübt wird, wie Fig. 3 zeigt. Dabei kommt der Druckerzeuger 5b außer Wirkung mit dem Bremszattel 4 bzw. dem Reibbelag 2, da er aufgrund eines Anschlages seine maximale Ausfordrweite beibehält.

Durch die Volumenverringerung im Druckerzeuger 5a wird Hydraulikfluid aus dessen Zylinderraum heraus in die Leitung 6 gedrückt, wodurch der Druck ansteigt. Wenn der Versorgungsdruck in der Leitung 6 größer wird als der Steuerdruck, der durch das Zylinderkolbenaggregate 10 z. B. durch eine Pedalbetätigung erzeugt wird, so erfolgt auf Grund der Rückschlagventile 12 und 16 ein Abschalten des Steuerdrucks von der Leitung 7 und eine Aufschaltung des Versorgungsdruckes aus der Leitung 6 auf die Leitung 7, so dass der Versorgungsdruck unmittelbar, abgesehen von Leistungskapazitäten und Kapazitäten des Hydraulikfluids im Bremsaktor wirkt. Es kommt demnach aufgrund des ansteigenden Druckes zur einer Selbstverstärkung, da durch den steigenden Druck der Bremsbelag stärker an die Bremsscheibe angestellt wird und hierdurch eine höhere Kraft auf den Druckerzeuger wirkt, wodurch wiederum der Versorgungsdruck in der Leitung 6 erhöht wird.

Dabei wirkt gleichzeitig der Versorgungs-
Bei einer Beendigung des Bremsvorganges wird der Steuerdruck abgebaut, wodurch beide Ventile V1 und V2 in die Ausgangslage der Fig. 1 zurückfallen.

Gemäß Fig. 5 wird der Bremsaktor an das Reservoir R angeschaltet, so dass dieser drucklos wird.

Fig. 6 zeigt, dass hiernach Fluid aus dem Tank über das Rückschlagventil 17 in das Zylinderkolbenaggregat 10 des Pedals bzw. Steuerdruckerzeugers zurückströmen kann, wobei weiterhin aufgrund der Tatsache, dass der Bremsaktor drucklos geworden ist und sich demnach der Reibkontakt zwischen Reibbelag und Brems scheibe löst, der Brems sattel 4 eine Rückstellbewegung in die Ursprungsstellung gemäß Fig. 1 durchführt, dadurch, dass, wie hier gezeigt, durch interne Kräfte in den Druckerzeugern 5 der Brems sattel 4 bewegt wird, bis dass der Kolben des als Zylinderkolbenaggregat ausgebilde ten Druckerzeugers 5b in den begrenzenden An schlag gelangt und somit wieder eine lose Wirkverbindung zu beiden einander gegenüberliegenden Druckerzeugern 5a und 5b aufweist. Bei der Rückstellbewegung kann dabei aufgrund der Volumenvergrößerung im Kolbenraum des Zylinderkolbenaggregates des Druckerzeugers 5b Fluid über das Rückschlagventil 18 ebenfalls aus dem Tank nachgesaugt werden. Es stellen sich somit wieder Ursprungsverhältnisse ein, so dass ein nächster Bremsvorgang erfolgen kann.

Die Fig. 7 zeigt gegenüber den Fig. 1–Fig. 6 eine weitere Ausführung, bei welcher der Steuer druck nicht ursprünglich über die Schaltvorrichtung V1/V2 und hier insbesondere das Ventil V1 gemäß den Fig. 1–Fig. 6 an dem Bremsaktor angeschaltet wird, sondern unmittelbar über ein Rückschlagventil 18. Hier erfolgt dann ein Abschalten des Steu erdrucks in dem Augenblick, wenn nach der Bremseinleitung und Erzeugung eines Versorgungsdruckes in der Leitung 6 im Bremsaktor ein Druck entsteht, der größer ist als der Steuerdruck, da in diesem Augenblick das Rückschlagventil 18 schließt und somit nur noch der über den Versorgungsdruck erzeugte Druck im Bremsaktor zu wirken kommt. Die übrige Regelung anhand der Kräfteverhältnisse, die durch die wirkenden Steuer- und Versorgungsdrücke beidseits der Ventile V1 und V2 wirken, sind dabei identisch wie zu den Ausführungen gemäß der Fig. 1–Fig. 6.

ZITATE ENTHALTEN IN DER BESCHREIBUNG

Zitierte Patentliteratur

- DE 3441128 [0012]
Patentansprüche

1. Vorrichtung zum Verzögern einer bewegten Masse mit wenigstens einem Reibbelag und einem hydraulischen Bremsaktor mit dem der wenigstens eine Reibbelag an eine Bremsfläche anrückbar ist, wobei bei einem Reibkontakt der wenigstens eine Reibbelag mit der Bremsfläche mitbewegbar ist und durch den wenigstens einen Reibbelag direkt oder indirekt über Verbindungsmittel eine von der Größe der Reibkraft abhängige Kraft auf einen hydraulischen Druckerzeuger ausübbar ist, mit dem in einer hydraulischen Leitung ein von der Kraft abhängiger Versorgungsdruck erzeugbar ist, dadurch gekennzeichnet, dass an die hydraulische Leitung (6) zwei hydraulische Druckerzeuger (5a, 5b) angeschlossen sind und mit dem wenigstens einen Reibbelag (2) abhängig von der Richtung seiner Bewegung bei einem Reibkontakt eine Kraft nur auf einen der beiden Druckerzeuger (5a, 5b) ausübbar ist.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Reibbelag (2) bei einem Reibschluß zu einem der beiden Druckerzeuger (5a, 5b) keinerlei Wirkverbindung aufweist.

3. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass in einer Ursprungsstellung, in der kein Reibkontakt vorherrscht, der wenigstens eine Reibbelag (2) direkt oder indirekt über Verbindungsmittel (4) mit beiden Druckerzeugern (5a, 5b) eine lose Wirkverbindung aufweist, die bei einem Reibkontakt zu einem der beiden Druckerzeuger (5a, 5b) lösbar ist oder dass der wenigstens eine Reibbelag (2) zu keinem der Druckerzeuger (5a, 5b) eine Wirkverbindung aufweist und bei einem Reibschluß mit einem der beiden Druckerzeuger (5a, 5b) direkt oder indirekt über Verbindungsmittel (4) in Wirkverbindung bringbar ist.

4. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass ein hydraulischer Druckerzeuger (5a, 5b) als wenigstens ein, insbesondere federbelastetes Zylinder-Kolbenaggregate (5a, 5b) ausgebildet ist, insbesondere welches zylindrisch mit einem Gestell der bewegten Masse befestigt ist und kolbenseitig wirkverbunden ist mit dem Reibbelag (2).

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das wenigstens eine Zylinder-Kolbenaggregate jedes Druckerzeugers (5a, 5b) ausgehend von einer Ursprungsstellung ohne Reibschluß nur zusammenschiebbar ist.

6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das wenigstens eine Zylinder-Kolbenaggregate jedes Druckerzeugers (5a, 5b) einen Anschlag aufweist, mit welchem die Ausfahrweite begrenzt ist.

7. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Reibbelag (2) und/oder dessen Haltevorrichtung (4) bei nachlassender oder ganz aufgehobener Reibkraft durch eine Kraftbeschleunigung, insbesondere eine in/an einem Zylinder-Kolbenaggregate (5a, 5b) angeordnete Feder, in eine Ursprungsstellung zurückstellbar ist, insbesondere wobei ein Zylinder-Kolbenaggregate (5a, 5b) eine maximal ausgeführte Stellung einnimmt.

8. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Druckerzeuger (5a, 5b) auf gegenüberliegenden Seiten des wenigstens einen Reibbelags (2) oder dessen Haltevorrichtung (4) angeordnet sind.

9. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der durch einen der beiden Druckerzeuger (5a, 5b) in der hydraulischen Leitung (6) erzeugte Versorgungsdruck durch hydraulische Schaltmittel (V1, V2, 16) an den Bremsaktor schaltbar ist, insbesondere zur Erzeugung einer Selbstverstärkung des Reibschlusses.

10. Verfahren zum Verzögern einer bewegten Masse mit wenigstens einem Reibbelag und einem hydraulischen Bremsaktor mit dem der wenigstens eine Reibbelag an eine Bremsfläche angedrückt wird und ein Reibkontakt entsteht, wobei der wenigstens eine Reibbelag mit der Bremsfläche mitbewegt wird und direkt oder indirekt über Verbindungsmittel eine von der Stärke des Reibkontaktes abhängige Kraft auf einen hydraulischen Druckerzeuger ausübt, mit dem in einer hydraulischen Leitung ein von der Kraft abhängiger Versorgungsdruck erzeugt wird, dadurch gekennzeichnet, dass an die hydraulische Leitung (6) zwei hydraulische Druckerzeuger (5a, 5b) angeschlossen sind und mit dem wenigstens einen Reibbelag (2) abhängig von der Richtung seiner Bewegung bei einem Reibschluß eine Kraft nur auf einen der beiden Druckerzeuger (5a, 5b) ausgeübt wird.

dadurch gekennzeichnet, dass ein Steuer-Druckgeber (10) vorgesehen ist, mit dem ein hydraulischer Steuerdruck erzeugbar ist, der an den Bremsaktor (1) schaltbar ist zur Erzeugung eines anfänglichen Reibkontakte, wobei der Steuerdruck vom Bremsaktor (1) schaltbar ist, sobald ein Vergleichsdruck, insbesondere der Versorgungsdruck oder der Druck im Bremsaktor (1) den Steuerdruck übersteigt und wobei der hydraulische Druck im Bremsaktor (1) mittels der Schaltvorrichtung (V1, V2) regelbar ist in Abhängigkeit von Kräften, die durch den Versorgungsdruck und den Steuerdruck auf die Schaltvorrichtung (V1, V2) ausgeübt sind.

12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Schaltvorrichtung (V1, V2) zwei Ventile (V1, V2) umfasst, deren jeweilige Ventilstellung durch eine Kraft einstellbar ist, die sich ergibt aus der Summe zumindest der durch den Versorgungsdruck und den Steuerdruck auf das jeweilige Ventil (V1, V2) ausgeübten, einander entgegengesetzten Kräfte, insbesondere noch einer weiteren Kraft, die sich durch eine Federbelastung des Ventils (V1, V2) ergibt.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass mit steigendem Steuerdruck eines der Ventile (V1), welches den Versorgungsdruck auf den Bremsaktor schaltet, öffnet oder zumindest weiter öffnet und das andere Ventil (V2), welches den Bremsaktor (1) an ein Reservoir (R) schaltet, schließt, zumindest weiter schließt.

14. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Ventil (V1), mit welchem der Versorgungsdruck oder der Steuerdruck auf dem Bremsaktor (1) schaltbar ist, bei fehlendem Steuerdruck durch eine Kraftbeaufschlagung in die geschlossene Stellung gesteuert und durch ansteigenden Steuerdruck aufsteuerbar ist.

15. Vorrichtung nach einem der vorherigen Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das Ventil (V2), mit welchem der Bremsaktor (1) auf das Reservoir (R) schaltbar ist, bei fehlendem Steuerdruck durch eine Kraftbeaufschlagung in die offene Stellung gesteuert ist und durch ansteigenden Steuerdruck schließbar ist.

16. Vorrichtung nach einem der vorherigen Ansprüche 12 bis 14, dadurch gekennzeichnet, dass bei denselben Verhältnissen von Steuerdruck und Versorgungsdruck an den beiden Ventilen (V1, V2) die an den beiden Ventilen (V1, V2) wirkenden Kräfte unterschiedlich sind, insbesondere die durch den Steuerdruck ausgeübte Kraft am Ventil (V2), welches den Bremsaktor (1) an das Reservoir (R) schaltet größer ist als die durch den Steuerdruck ausgeübte Kraft an dem Ventil (V1), welches den Versorgungs- oder Steuerdruck an den Bremsaktor (1) schaltet.

17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die verschiedenen Kräfte erzeugt sind durch verschieden große Flächen (A) an den Ventilen (V1, V2), auf die der Steuerdruck und/oder der Versorgungsdruck wirkt oder durch verschiedenen große Kraftbeaufschlagung der Ventile (V1, V2).

18. Verfahren zum Verzögern einer bewegten Masse mit wenigstens einem Reibbelag und einem hydraulischen Bremsaktor mit dem der wenigstens eine Reibbelag an eine Bremsfläche angedrückt wird und ein Reibschluss entsteht, wobei der wenigstens eine Reibbelag mit der Bremsfläche mitbewegt wird und direkt oder indirekt über Verbindungsmittel eine von der Stärke des Reibschlusses abhängige Kraft auf wenigstens einen hydraulischen Druckerzeuger ausübt, mit dem in einer hydraulischen Leitung ein von der Kraft abhängiger Versorgungsdruck erzeugt wird, der über eine Schaltvorrichtung an den Bremsaktor insbesondere proportional an- und/oder abgeschaltet wird, insbesondere nach Anspruch 10, dadurch gekennzeichnet, dass mit einem Steuer-Druckgeber (10) ein hydraulischer Steuerdruck erzeugt wird, der an den Bremsaktor (1) schaltbar ist zur Erzeugung eines anfänglichen Reibschlusses und der vom Bremsaktor (1) schaltbar ist, sobald ein Vergleichsdruck, insbesondere der Versorgungsdruck oder der Druck im Bremsaktor den Steuerdruck übersteigt, wobei der hydraulische Druck im Bremsaktor (1) mittels der Schaltvorrichtung (V1, V2) geregelt wird in Abhängigkeit von Kräften, die durch den Versorgungsdruck und den Steuerdruck auf die Schaltvorrichtung (V1, V2) ausgeübt werden.

Es folgen 7 Blatt Zeichnungen.
Einleitung Bremsvorgang durch Aufprägung des Solldruck über das Pedal

Reibbeläge anlegen
$F_N=0$

S_a

S_b

p_{AZ}

p_{Soll}

p_{Soll}

ND-Ventil v_2

HD-Ventil v_1

$X\cdot A$

$(X+X_0)A$

$\overline{Figur\ 2}$
Bremsvorgang $F_{\text{Brems}} < F_{\text{Soll}}$

$F_N = p_{BA} \cdot A$

$F_B = 2F_N \mu$

μ

σ

δ

p_{AZ}

p_{AZ}

p_{AS}

p_{Soll}

p_{BA}

$p_{BA} + (X + X_0)A$

Ft:\ 3

X::A

HD-Ventil \mathcal{V}_1

ND-Ventil \mathcal{V}_2

Sollwert
Bremsvorgang bei
\[p_{\text{Soll}} \cdot X < p_{\text{AZ}} < p_{\text{Soll}} \cdot (X+X_0) \]

\[F_N = p_{\text{BA}} \cdot A \]

\[F_B = 2 \cdot F_N \cdot \mu \]
Bremsvorgang $F_{\text{Brems}} > F_{\text{Soll}}$

$F_N = \rho_{BA} \cdot A$

$F_B = 2 \cdot F_N \cdot \mu$

ρ_{AZ}

ρ_{BA}

HD-Ventil M

ND-Ventil M_2

$(X + X_0)A$

ν

Füger 5

Sollwert
Bremse lösen

HD-Ventil V₁

ND-Ventil V₂

\(F_B = 0 \)

Rückstellbewegung

\(p_{BA} = 0 \)

offen

Rückhub

\(p = 0 \)

\(X + X_0 \)