Generating Random Variates

- **Overview**
 - We will discuss algorithms for generating observations ("variates") from non-uniform distributions (e.g. Exponential, Weibull, etc.)
 - Generating random variates is also known as sampling.
 - The algorithms depend on the form of the desired distribution for random variable \(X \). But they have the same general form:

 ![Diagram]

 Generate IID \(U(0,1) \) random number(s) → Transformation → Return \(X \)

 - So generating "good" \(U(0,1) \) is critical.
 - Some desired properties of variates generating algorithm are as follows:
 - Efficiency (low storage);
 - Fast (setup, marginal);
 - Robustness (working well for all parameter values);
 - Simplicity (understand and implement with ease);
 - Requiring only \(U(0,1) \) (and preferably \(1 U \rightarrow 1 X \)).
• Inverse Transform Method

➢ This is the “simplest” and probably “best” method there is. (Its quality varies among distributions though.)

➢ This method is based on the following theorem.

Theorem If $F(x)$ is the distribution function of a continuous random variable (rv) X (i.e., $F(x) = P\{X < x\}$), then the rv $U = F(X)$ is uniformly distributed on $(0,1)$, i.e. $U \sim U(0,1)$.

Proof.

\[
P\{U < F(x)\} = P\{F(X) < F(x)\} = P\{F^{-1}(F(X)) < F^{-1}(F(x))\} = P\{X < x\} = F(x),
\]

where F^{-1} is the inverse of F (i.e., if $u = F(x) \Rightarrow x = F^{-1}(u)$).

Noting that if $V \sim U(0,1)$, $P\{V < v\} = v$ completes the proof. ■

➢ It follows from the theorem that we can write $X = F^{-1}(U)$, where $U \sim U(0,1)$.

➢ This leads to the inverse transform method for generating X.

1. Generate $u \sim U(0,1)$

2. Set $X = F^{-1}(u)$
The main difficulty in using the inverse transform method is inverting \(F \).

This can be done easily using simple analytical arguments in some cases (e.g. exponential distribution).

In other cases, inverting \(F \) requires approximate numerical methods (e.g. the normal distribution).

- **Example 1**

 Develop an algorithm to generate random variates from an exponential rv \(X \), which is exponentially distributed with mean \(1/\lambda \).

 First, derive \(F^{-1} \). Note that \(F(x) = 1 - e^{-\lambda x} \). Then, setting \(u = F(x) \) implies

 \[
 u = 1 - e^{-\lambda x} \Rightarrow e^{-\lambda x} = 1 - u \Rightarrow -\lambda x = \ln(1 - u) \Rightarrow x = -\frac{\ln(1 - u)}{\lambda}.
 \]

 Therefore, \(F^{-1}(u) = -\frac{\ln(1 - u)}{\lambda} \).
Note that if \(U \sim U(0,1) \Rightarrow 1 - U \sim U(0,1) \).

The algorithm for generating \(X \) is as follows:

1. Generate \(U \sim U(0,1) \)
2. Set \(X = -\frac{\ln U}{\lambda} \).

Applying this algorithm in Excel to produce 100 exponential random variables with \(\lambda = 1 \) yielded the following graph, plotted by the ExperFit software.

The generated histogram closely fits the density function of the exponential distribution, \(f(x) = \lambda e^{-\lambda x} \).
• Example 2
 ➢ Develop an algorithm to generate random variates from the standard normal r.v., Z.
 ➢ The distribution function of Z is
 \[F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt , \]
 which is not invertible analytically, but maybe, numerically.

• Intuition behind the inverse transform method
 ➢ Transform the u’s which are uniformly distributed on the vertical axis into x’s which are dense in areas where the density of $X, f_X(x)$ is high.
- **Inverse transform for discrete distributions**

 - This is similar to the continuous case, but now the distribution function is not smooth,

 \[F(x_i) = \sum_{x_j \leq x_i} p(x_j), \]

 Where \(p(x_j) = P\{X = x_j\} \).

 - The inverse transform method is then applied as follows.

 1. Generate \(U \sim U(0,1) \)
 2. Find the smallest \(x_i \) such that \(U \leq F(x_i) \)
 3. Set \(X = x_i \)

 - The inverse transform method can be applied exactly for any discrete distribution.

 - However, it may not be too efficient due to the search in step 2.
• **Example 3**
 - The daily demand for a commodity, X, takes on values 1, 2, and 3 with probabilities 0.3, 0.5, and 0.2.
 - In this case, $F(1) = 0.3$, $F(2) = 0.8$, and $F(3) = 1$.
 - Then, X is generated as follows.
 1. Generate $U \sim U(0,1)$
 2. If $U \leq 0.3$, set $X = 1$.
 If $0.3 < U \leq 0.8$, set $X = 2$.
 Otherwise, set $X = 3$.

• **Composition Method**
 - Consider a rv X that takes on two, or more, other rv’s at random.
 - E.g., suppose you’re equally likely to choose roads 1 and 2 every day. Suppose travel times on roads 1 and 2, X_1 and X_2, are exponentially distributed with rates λ_1 and λ_2.
 - Then, your travel time is a composition or a “mixture” of X_1 and X_2. (This is called a hyperexponential distribution.)
 - The distribution function of X can be written as
 $$F_X(x) = 0.5F_{X_1}(x) + 0.5F_{X_2}(x).$$
 - In general, there are many such mixed distributions with distribution functions of the form
 $$F_X(x) = \sum_i p_i F_{X_i}(x).$$
Generating from such distribution is done using the composition method as follows:

1. Generate an integer J such that $P\{J = j\} = p_j$
2. Generate X_j and set $X = X_j$.

These two steps will require generating two or more $U(0,1)$.

- **Example 4**
 - Develop an algorithm to generate random variates from a hyperexponential distribution, with distribution function
 \[
 F_X(x) = 0.5(1 - e^{-\lambda_1 x}) + 0.5(1 - e^{-\lambda_2 x})
 \]
 - The algorithm is as follows.
 1. Generate $U_1 \sim U(0,1)$
 2. Generate $U_2 \sim U(0,1)$. If $U_1 < 0.5$, set $X = -(1/\lambda_1)\ln(U_2)$. Otherwise, set $X = -(1/\lambda_2)\ln(U_2)$.

- **Convolution Method**
 - Some rvs can be written as a sum (convolution) of other independent rvs. That is,
 \[
 X = \sum_{i=1}^{m} X_i.
 \]
 - In this case, X can be generated as follows:
 1. Generate X_1, X_2, \ldots, X_m
 2. Set $X = \sum_{i=1}^{m} X_i$.
• **Example 5**
 - An Erlang random variable, \(X \), is the sum of \(m \) iid exponential rvs with rate \(\lambda \).
 - The following algorithm could be used to generate from \(X \).
 1. Generate \(U_1, U_2, \ldots, U_m \sim U(0,1) \)
 2. Set \(X_1 = -\ln(U_1), X_2 = -\ln(U_2), \ldots, X_m = -\ln(U_m) \)
 2. Set \(X = \sum_{i=1}^{m} X_i \).

• **Composition versus Convolution**
 - Composition: Expresses the distribution function as a (weighted) sum of other distribution functions.
 - Convolution: Expresses the random variable itself as the sum of other random variables.
 - Not the same thing.

• **Acceptance-Rejection Method**
 - Generally used when inverting \(F \) is difficult and no efficient convolution or composition method exist.
 - Acceptance-rejection works by specifying a function \(t(x) \) that majorizes the density of \(X \), i.e., \(t(x) \geq f(x) \) for all \(x \).
Then, a density function is specified as

\[r(x) = \frac{t(x)}{c}, \text{ where } c = \int_{-\infty}^{\infty} t(x) dx. \]

The acceptance rejection algorithm is as follows.

1. Generate \(Y \sim r(x) \).
2. Generate \(U \sim U(0,1) \).
3. If \(U \leq f(Y) / t(Y) \), (accept) set \(X = Y \). Otherwise, (reject) go back to Step 2.

It can be shown formally that this method is valid.\(^1\)

It can be shown that the acceptance probability is \(1/c \), i.e.,

\[P\{U \leq f(Y) / t(Y)\} = 1/c, \]

which is a measure of efficiency.

- **Example 6**

Consider generating variates from a Beta distribution having the following density function,

\[f(x) = \begin{cases}
60x^3(1-x)^2, & 0 \leq x \leq 1, \\
0, & \text{otherwise}
\end{cases} \]

It can be shown analytically that \(f(x) < t(x) \), where

\[t(x) = \begin{cases}
2.0736, & 0 \leq x \leq 1, \\
0, & \text{otherwise}
\end{cases} \]

\(^1\) The idea of the proof is to show that \(P\{X \leq x \} = P\{Y \leq x \mid A \} \), where \(A \) is event of “accepting” \(X \) and setting \(X = Y \) in Step 3 of the algorithm. The proof follows by conditioning on \(Y \). E.g.,

\[P\{A\} = P\{U \leq f(Y) / t(Y)\} = \int_{-\infty}^{\infty} P\{U \leq f(y) / t(y)\} r(y) dy = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y) / t(y) dy \right) r(y) dy = (1/c) \int_{-\infty}^{\infty} f(y) dy = 1/c. \]
In this case, \(c = \int_0^1 t(x)\,dx = \int_0^1 2.0736\,dx = 2.0736 \).

Then,
\[
r(x) = \begin{cases}
1, & 0 \leq x \leq 1, \\
0, & \text{otherwise}
\end{cases}
\]

Therefore, \(Y \sim r(x) \) is \(U(0,1) \).

The acceptance-rejection algorithm is as follows:

1. Generate \(Y \sim U(0,1) \).
2. Generate \(U \sim U(0,1) \).
3. If \(U \leq 60Y^3(1-Y)^2/2.0736 \), (accept) set \(X = Y \). Otherwise, (reject) go back to Step 2.

In this case the acceptance probability is \(1/c = 0.48 \). The algorithm could be a bit slow.
- Intuition behind Acceptance-Rejection

- Think in term of the Beta distribution in Example 6.
- The AR algorithm is transforming the $Y \sim U(0,1)$ into $X \sim \text{Beta}$, by admitting Y variates with large X density (with $f(Y) \geq Ut(Y)$) as X variates.