Chapter 6 Annual Worth Analysis

• Introduction
 ➢ Annual worth (AW) analysis is a variant of the present worth analysis discussed in Chapter 5.
 ➢ However, AW analysis has many advantages that make it a useful technique for comparing alternatives.

• Advantages of AW analysis
 ➢ It’s a popular analysis technique.
 ➢ It’s easy to understand. Results are reported in $/year.
 ➢ It simplifies the process of comparing alternatives
 o No need to compare two alternatives for LCM years
 o Compare for one life cycle of each alternative only

• How does it work?
 ➢ For alternative \(j \), find the uniform annual series, with value \(AW_j \), which is equivalent to all the cash flows of the alternative at the decision maker’s MARR.
 ➢ An alternative \(j \) with \(AW_j \geq 0 \) is economically viable.
 ➢ Compare annualized series (the \(AW_j \)s) of all alternatives
 ➢ The alternative with largest \(AW_j \) is selected.
• **Keep in mind**
 - PW and AW analysis are equivalent
 - An alternative has AW ≥ 0 if and only if PW ≥ 0.
 - An alternative has largest AW among a set of alternatives if and only if it has the largest PW.

• **AW analysis assumptions**
 - Same as those of PW analysis with the LCM method
 - The service provided by the alternatives will be needed for LCM years or more.
 - An alternative is repeated over each life cycle of the LCM in exactly the same manner.
 - Cash flow estimates are the same in every life cycle.

• **Capital Recovery (CR) calculation**
 - Capital Recovery (CR) is the annualized equivalent of the initial investment P and the future salvage value S of an alternative,
 $$ CR = -P(A/P, i, n) + S(A/F,i,n) . $$
 - Commonly, CR is added to the annual operating costs AOC to get AW,
 $$ AW = CR + AOC . $$
• **Annual worth analysis of permanent investments (n = ∞)**

 ➤ This is similar to the capitalized cost analysis in Chapter 5.

 ➤ For a recurrent cash flow R,

$$A_R = R\left[\frac{i}{(1+i)^n-1}\right].$$

 ➤ For a non-recurrent cash flow C, occurring at time n_C,

$$A_C = \frac{PW_C}{i} = \frac{C}{i(1+i)^C}.$$