Chapter 4 Nominal and Effective Interest Rates

- **Illustrative Example**
 - You placed $100 in a saving account for one year at an interest rate of 1% *per month*.
 - Calculate the amount of interest and annual interest rate.
 - \[F = P(1 + i)^n = 100 \times 1.01^{12} = \$112.68. \]
 - The interest earned is \$112.68 - $100 = $12.68.
 - The annual interest rate is \(\frac{12.68}{100} = 12.68\%\).
 - We say that the *effective* annual interest rate is 12.68%.
 - Or, the interest rate is 12% per year, compounded monthly.
 - That is, the effective annual interest that corresponds to a 12% *nominal* annual interest, *compounded* monthly is 12.68%.

- **Nominal interest rate**
 - A nominal interest rate is an interest rate that does not include any consideration of compounding.
 - Means “in name only”, “not the true, effective rate.” E.g.,
 - 12% per year, compounded monthly
 - 12% is NOT the true effective rate (per year)
 - 12% represents the nominal rate
 - Nominal interest rate is commonly referred to as “APR” (annual percentage rate).
- **Effective interest rate**
 - Effective interest rate is the actual rate that applies for a stated period of time.
 - It takes into account the effect compounding of interest
 - Effective interest is stated in the following form:
 $$r \text{ (per year), compounded every } CP.$$
 - It involves two parameters
 - The annual nominal rate r.
 - The compounding period, CP, the time where interest applies
 - E.g.,
 - Daily compounding, $CP = 1 \text{ day } = 1/365 \text{ year}$.
 - Weekly compounding, $CP = 1 \text{ week } = 1/52 \text{ year}$.
 - Monthly compounding, $CP = 1 \text{ month } = 1/12 \text{ year}$.
 - Quarterly compounding, $CP = 3 \text{ months } = 1/4 \text{ year}$.
 - Semiannual compounding, $CP = 6 \text{ months } = 1/2 \text{ year}$.
 - The effective rate is called APY (annual percentage yield).

- **Factors under m-time-a-year compounding**
 - Under compounding over a period $CP = 1/m \text{ year}$ (e.g., $CP = 1/12 \text{ year } = 1 \text{ month}$), and at a nominal interest rate r, a present current P is equivalent after k periods (e.g. months) to
 $$F = P (1+r/m)^k \Rightarrow (P/F, r, m, k) = (1+r/m)^k .$$
 - Similarly, F dollars after k periods are equivalent to
 $$P = F / (1+r/m)^k \Rightarrow (F/P, r, m, k) = 1 / (1+r/m)^k .$$
• **Computing the effective interest rate**
 - Note that the effective interest rate per CP is r/m, where $m = 1/CP$, with CP given in fraction of a year, is the number of times interest is compounded per year.
 - E.g., with monthly compounding, $m = 12$, and a nominal rate of 12% translates into an effective monthly rate of 1% .
 - With semiannual compounding, $m = 2$, and a nominal rate of 12% translates into an effective semiannual rate of 6% .
 - Then, 1 is equivalent to $(1 + r/m)^m$ after 1 year.
 - The effective annual rate is such that $1 + i = (1 + r/m)^m$. I.e.,
 $$i = \left(1 + \frac{r}{m}\right)^m - 1.$$

• **Continuous compounding**
 - If the compounding period, CP, is too small, $CP \to 0$, the number of compounding times gets too large, $m \to \infty$.
 - This situation is known as “continuous compounding.”
 - By noting that there are mt compounding over a time t expressed in years, the F/P factor over time t, under continuous compounding, is $\lim_{m \to \infty}(1 + r/m)^{mt} = e^{rt}$
 - Similarly, under continuous compounding, the effective annual rate is $i = e^r - 1$.
 - Continuous compounding is often assumed in quantitative finance as it simplifies the analysis.
- Example: $1 invested at a nominal rate of 8%

<table>
<thead>
<tr>
<th>Year</th>
<th>$m = 1$</th>
<th>$m = 2$</th>
<th>$m = 4$</th>
<th>$m = 12$</th>
<th>$m = \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.080</td>
<td>1.082</td>
<td>1.082</td>
<td>1.083</td>
<td>1.083</td>
</tr>
<tr>
<td>2</td>
<td>1.166</td>
<td>1.170</td>
<td>1.172</td>
<td>1.173</td>
<td>1.174</td>
</tr>
<tr>
<td>3</td>
<td>1.260</td>
<td>1.265</td>
<td>1.268</td>
<td>1.270</td>
<td>1.271</td>
</tr>
<tr>
<td>4</td>
<td>1.360</td>
<td>1.369</td>
<td>1.373</td>
<td>1.376</td>
<td>1.377</td>
</tr>
<tr>
<td>5</td>
<td>1.469</td>
<td>1.480</td>
<td>1.486</td>
<td>1.490</td>
<td>1.492</td>
</tr>
<tr>
<td>6</td>
<td>1.587</td>
<td>1.601</td>
<td>1.608</td>
<td>1.614</td>
<td>1.616</td>
</tr>
<tr>
<td>7</td>
<td>1.714</td>
<td>1.732</td>
<td>1.741</td>
<td>1.747</td>
<td>1.751</td>
</tr>
<tr>
<td>8</td>
<td>1.851</td>
<td>1.873</td>
<td>1.885</td>
<td>1.892</td>
<td>1.896</td>
</tr>
<tr>
<td>9</td>
<td>1.999</td>
<td>2.026</td>
<td>2.040</td>
<td>2.050</td>
<td>2.054</td>
</tr>
<tr>
<td>10</td>
<td>2.159</td>
<td>2.191</td>
<td>2.208</td>
<td>2.220</td>
<td>2.226</td>
</tr>
</tbody>
</table>
• **Interest rate that varies with time**
 - In practice, interest rate may vary from one period to the other.
 - In particular, it is often *expected* that the interest rate will *increase* with time.
 - If the interest rates in periods, 1, ..., n are \(i_1, \ldots, i_n \). Then, the future worth after n periods, \(F \), of a present amount \(P \) is
 \[
 F = P(1+i_1)(1+i_2)\ldots(1+i_n) = P \prod_{i=1}^{n} (1+i_i).
 \]
 - The rates \(i_1, \ldots, i_n \) are known as *short rates*.
 - The short rate \(i_t \) represents the expected 1-year rate after \(t \) years.