Automated Detection and Classification of Corneal Haze Using Optical Coherence Tomography in Patients With Keratoconus After Cross-Linking

Ahmad R. Dhaini, PhD,* Maamoun Abdul Fattah, MD,† Sara Maria El-Oud, MS,* and Shady T. Awwad, MD†

Purpose: To evaluate a proposed technology for offering objective grading and mapping of corneal haze as detected by corneal spectral domain optical coherence tomography after corneal cross-linking.

Methods: This was a retrospective study to evaluate corneal optical coherence tomography images performed on 44 eyes of 44 patients who underwent corneal cross-linking between January 2014 and May 2015, at the American University of Beirut Medical Center.

Results: Overall average brightness of the cornea was markedly increased from 43.4% (±6.0) at baseline to 50.2% (±4.4) at 1 month, 47.9% (±4.4) at 3 months, and 46.4% (±5.7) at 6 months with P <0.001, <0.001, and 0.005, respectively. In the anterior stroma, the average brightness significantly increased at 1, 3, and 6 months with values of 54.8% (±3.9), 52.5% (±5.2), and 49.7% (±6.9) with P <0.001, <0.001, and 0.003, respectively. In the mid stroma, the change was clinically significant at 1 and 3 months, whereas in the posterior stroma, it was only significant at 1 month compared with baseline (P = 0.003). Overall, haze was mostly present at 1 month after surgery in all regions, especially in the anterior (32.1%; ±19.2) and mid stromal regions (9.1%; ±18.8), P <0.001 and 0.001, respectively. In contrast, haze in the posterior stromal region peaks at 3 and 6 months after surgery.

Conclusions: Anterior stromal haze was the greatest in intensity and area and it was present for a longer time span than mid and posterior stromal haze. At 12 months, the anterior stroma had still more haze intensity than preoperatively. This image-based software can provide objective and valuable quantitative measurements of corneal haze, which may impact clinical decision-making after different corneal surgeries.

Key Words: corneal haze, cross-linking, novel software, haze detection, haze classification

(Cornea 2018;37:863–869)

Corneal haze is a condition resulting from several pathological conditions, the most common being infection and iatrogenic processes, mainly surgical interventions. The latter comprise photorefractive keratectomy and corneal cross-linking (CXL), among others.1-6 The assessment of corneal haze has historically been subjective based on slit-lamp biomicroscopic evaluation and using rough, very subjective grading methods such as the Fantes methodology.7 The latter is often confounded by the amount of slit-lamp illumination, contrast, and personal bias of the examiner. A more objective haze assessment is corneal densitometry analysis, which has been used by Scheimpflug tomographers to assess the amount of light scatter by the cornea. The output is expressed in grayscale units (GSUs).8,9 The GSU scale is calibrated by proprietary software, which defines a minimum light scatter of 0 (maximum transparency) and maximum light scatter of 100 (minimum transparency). Optical coherence tomography (OCT) recently has been a great tool to accurately and objectively assess corneal haze and the inflammatory status of both anterior and posterior segments because of its higher resolution compared with Scheimpflug imaging.10,11 However, a unified system interpreting the findings has been lacking, making it difficult to evaluate changes in corneal haze and interpret aggregate data.

In this study, we evaluate the ability of a novel software program developed by the authors at the American University of Beirut to grade and map corneal haze as detected by corneal OCT after CXL and compared its output with human operators’ scores. Software has a role to establish an accurate, objective, and standardized method in evaluating corneal haze, in a repeatable and reproducible way.

MATERIALS AND METHODS

Patient Selection

This study retrospectively evaluated corneal OCT images performed on eyes of patients who underwent CXL between January 2014 and May 2015, at the American University of Beirut Medical Center in Lebanon. Corneal
OCT was performed as part of their routine postoperative protocol measurements. Inclusion criteria were keratoconus eyes of patients aged 14 years and older, who underwent CXL at American University of Beirut Medical Center because of disease progression, and had completed all follow-up examinations through the first postoperative year. Keratoconus progression was defined as an increase in the steepest keratometric value (Kmax) of at least 1 diopter (D) in 1 year, or a mean central corneal thickness (CCT) decrease of ≥5% in 6 months, all observed in 3 consecutive tomographic measurements. Exclusion criteria were intraocular pressure of >21 mm Hg, active ocular pathology, corneal thickness <400 μm at the thinnest point, preexisting corneal opacification/scars, history of keratitis, peripheral marginal degeneration, previous corneal and/or intracocular surgeries, and autoimmune and/or connective tissue disease. In our retrospective review, 44 eyes of 44 patients were selected. A total of 52 eyes were reviewed, but 8 eyes were excluded, because 3 eyes had a CCT <400 μm at the thinnest point and 5 eyes had previous corneal surgeries (intracorneal ring segments). All patients underwent a complete ophthalmic examination as part of their routine workup before CXL, including corneal tomography and corneal OCT. This study was approved by the Institutional Review Board at the American University of Beirut and adhered to the Declaration of Helsinki principles.

Corneal Cross-Linking

CXL was performed according to the Dresden protocol. The eye to be treated was anesthetized by applying 4-mm videos) were –·128 mode. test

Corneal Cross-Linking

CXL was performed according to the Dresden protocol. The eye to be treated was anesthetized by applying 4-mm videos) were –·128 mode. test

Corneal Cross-Linking

CXL was performed according to the Dresden protocol. The eye to be treated was anesthetized by applying 4-mm videos) were –·128 mode. test

Corneal Cross-Linking

CXL was performed according to the Dresden protocol. The eye to be treated was anesthetized by applying 4-mm videos) were –·128 mode. test

Software Analysis of Haze in OCT Sections

To permit automated objective detection and classification of corneal haze, we developed a software solution, which performs custom image analysis techniques and uses methods from the image-processing library OpenCV (OpenCV version 3.1: Image processing software, December 2015). The new software takes as input OCT images from the video files of the corneal OCT cube sections and provides 2 types of outputs: 1) the OCT image with visual annotations that reflect the detection and classification of haze and 2) statistics about haze. The detection and classification of corneal haze in an OCT image is achieved by the automated solution using the following steps:

1. Loading the OCT image/video into the program (Figure 1A)
2. Detecting corneal boundaries (excluding the epithelium) (Figure 1B)
3. Computing corneal properties such as area(s), intensity, and average brightness
4. Splitting the cornea into 3 regions (the cornea was arbitrarily divided to 3 equal parts depending on the central thickness from the Bowmen to endothelial layer):
 1) anterior stroma; 2) mid stroma; 3) posterior stroma.
5. Detecting haze regions (contours) (Figure 1C)
6. Aggregating “close” haze regions
7. Classifying hazy into corresponding region(s) (Figure 1D)

Statistical Analysis

The sample size was calculated based on a previously calculated standard deviation of 4.03 GSU for central corneal hazy after CXL using Scheimpflug tomography; using 95% confidence interval and 1.25 GSU being the margin of error, the minimum computed sample size was 40 eyes. Statistical analysis was performed using SPSS version 21.0 (SPSS Inc, Chicago, IL), and Microsoft Office Excel was used for data management and analyses. Descriptive statistics were reported as mean and SDs for continuous variables. The paired t test was used to compare hazy intensity and area between different time points. Two-way repeated-measures analysis of variance (ANOVA) with the Bonferroni correction for post hoc analysis was used to compare the change in hazy after CXL. P < 0.05 was considered statistically significant unless otherwise stated.

RESULTS

Demographics

The OCT measurements that were analyzed by software belonged to 44 eyes of 44 patients (30 males and
14 females; mean age 22.0 ± 6.1 yrs). Ten eyes (22.7%) had grade 1 keratoconus according to the Amsler–Krumeich classification, 28 eyes (63.6%) had grade 2, and 6 eyes (13.6%) had grade 3. The average preoperative CCT and Kmax of the recruited eyes were 465.60 ± 43.55 μm and 54.79 ± 4.70 D, respectively.

Corneal Haze by OCT-Based Software

Corneal haze was assessed by 3 parameters: intensity of haze, percentage of the area occupied by haze, and haze location: anterior, mid, and posterior stroma.

Haze Intensity

Table 1 shows the average brightness of different corneal regions and the total aggregate, for all eyes, collected at different periods of time, expressed in percentage. The overall average brightness markedly increased compared with the baseline value at 1, 3, and 6 months periods with \(P < 0.001 \), \(< 0.001 \), and \(0.005 \), respectively. In the anterior stromal region, the average brightness significantly changed at 1, 3, and 6 months with \(P < 0.001 \), \(< 0.001 \), and \(0.003 \), respectively. The average increase in brightness in the mid stromal region was clinically significant at 1 and 3 months with \(P < 0.001 \) and 0.048, respectively. Finally, the average brightness in the posterior stroma was only clinically significant at the 1-month period compared with baseline (\(P = 0.003 \)) (Figure 2 and Table 1).

Area Occupied by Haze

Figure 3 shows the trend in the corneal haze location and area occupied by haze. Overall, haze was mostly present at 1 month after surgery for all regions, especially in the

TABLE 1. Percentage of Brightness Intensity in Each Corneal Region After CXL

<table>
<thead>
<tr>
<th>Region</th>
<th>Anterior Stroma</th>
<th>Middle Stroma</th>
<th>Posterior Stroma</th>
<th>Total Cornea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>46.5 (±4.9)</td>
<td>43.2 (±6.7)</td>
<td>39.2 (±7.8)</td>
<td>43.3 (±6.0)</td>
</tr>
<tr>
<td>33.5–59.5</td>
<td>30.5–56.3</td>
<td>25.1–53.6</td>
<td>30.3–54.9</td>
<td></td>
</tr>
<tr>
<td>At 1 month</td>
<td>54.7 (±3.9)</td>
<td>50.1 (±5.0)</td>
<td>44.0 (±7.2)</td>
<td>50.2 (±4.4)</td>
</tr>
<tr>
<td>43.7–62.8</td>
<td>35.9–58.9</td>
<td>28.5–65.3</td>
<td>36.7–59.8</td>
<td></td>
</tr>
<tr>
<td>(P < 0.001)</td>
<td>(P < 0.001)</td>
<td>(P = 0.005)</td>
<td>(P = 0.149)</td>
<td></td>
</tr>
<tr>
<td>At 3 months</td>
<td>52.4 (±5.2)</td>
<td>45.2 (±3.6)</td>
<td>37.5 (±4.8)</td>
<td>47.9 (±4.4)</td>
</tr>
<tr>
<td>41.3–65.2</td>
<td>39.5–53.2</td>
<td>31.7–49.1</td>
<td>38.8–57.1</td>
<td></td>
</tr>
<tr>
<td>(P < 0.001)</td>
<td>(P < 0.001)</td>
<td>(P = 0.003)</td>
<td>(P = 0.091)</td>
<td></td>
</tr>
<tr>
<td>At 6 months</td>
<td>49.7 (±6.9)</td>
<td>45.0 (±6.6)</td>
<td>39.8 (±7.0)</td>
<td>46.4 (±5.7)</td>
</tr>
<tr>
<td>28.1–60.1</td>
<td>29.5–57.9</td>
<td>24.3–57.7</td>
<td>30.6–55.9</td>
<td></td>
</tr>
<tr>
<td>(P < 0.001)</td>
<td>(P = 0.048)</td>
<td>(P = 0.169)</td>
<td>(P = 0.31)</td>
<td></td>
</tr>
<tr>
<td>At 12 months</td>
<td>48.4 (±6.4)</td>
<td>44.3 (±5.8)</td>
<td>39.8 (±4.8)</td>
<td>44.8 (±5.3)</td>
</tr>
<tr>
<td>29.8–68.5</td>
<td>31.5–57.5</td>
<td>26.1–50.3</td>
<td>32.6–57.5</td>
<td></td>
</tr>
<tr>
<td>(P = 0.003)</td>
<td>(P = 0.146)</td>
<td>(P = 0.727)</td>
<td>(P = 0.645)</td>
<td></td>
</tr>
</tbody>
</table>
anterior and mid stromal regions. In contrast, haze in the posterior stromal region peaks at 3 and 6 months after surgery (Table 2).

Corneal Haze as Graded by Clinicians at the Slit-Lamp

The variation of haze, as determined by the slit lamp, was plotted over time and is shown in Figure 4. At baseline, all the patients had clinical haze of grade 0. After CXL, haze was more severe at 1 month (ie, more eyes had grade 1+ and grade 2+) compared with the 3-, 6-, and 12-month follow-up visits.

Case Example

To highlight the ability of the new software to aid in clinical analysis and decision-making for tracking each patient’s haze progress over time, Figure 5 serves as a case example: In general, haze peaked at 1 and 3 months after surgery compared with baseline. Posterior haze developed directly after treatment (1 mo), then haze mainly occupied the anterior part of the cornea between the first and third months. After this period, it significantly decreased to preoperative values at 6 and 12 months postoperatively after a topical steroid treatment course.
DISCUSSION

It is interesting that an objective classification of haze for practical clinical purposes has not yet been developed. This is more notable especially after the recent popularity of procedures that require objective and accurate assessment of corneal haze such as CXL and photorefractive keratectomy in irregular corneas, especially when combined with or performed after previous CXL. Most clinical studies evaluating results of the foregoing procedures use clinical-based grading performed on the slit-lamp (such as Fantes grading) or Scheimpflug densitometric grading.

The problem with the former method is that it lacks standardization and is very subjective and operator-, illumination-, and instrumentation-dependent, and no repeatability or reproducibility studies are available. Scheimpflug densitometric grading is a major improvement over the slit lamp-based grading, but it lacks high resolution and suffers from distortion and erroneous data resulting from potential light scattering and absorption associated with anterior or mid stromal haze.

Additionally, there is no dedicated software for analyzing the location (anterior, mid or posterior stroma, central or mid peripheral) and area of involvement.

Software developed by the authors is cloud-based and has been designed to analyze OCT cube videos and images.
from the Zeiss Cirrus platform, but the method used can be
tweaked to receive input from any commercially available
OCT machine. The results shown and their overall correlation
to Scheimpflug and slit-lamp grading indicate that OCT-based
haze grading, using image analysis software, provides
a standardized, objective, fast, and detailed information about
haze intensity, area occupation, and location within
the cornea.

Using OCT-based image analysis software, important
haze trends after CXL can be detected. Although the highest
mean intensity of haze was found to be at 1 month, then at 3
months, the largest mean area occupied by haze was at 1
month, except for the posterior stroma. Anterior stromal haze
was largest in intensity and in area, and it was present for
a longer time span than the mid and posterior stromal haze. At
12 months, the anterior stroma had still more haze intensity
than preoperatively (not statistically significant), whereas the
intensity in the remaining cornea returned to baseline.
Additionally, important findings can be noted by examining
individual scans. In Figure 5, posterior stromal haze intensity
and area occupation peak at 1 month then taper down
thereafter, whereas anterior and mid stromal haze becomes
worse at 3 months. This finding denotes that posterior stromal
haze is likely to be a direct effect of ultraviolet and free
radical injury, whereas haze in the remaining cornea seems to
be a reaction to the injury, developing because of cell
migration and additional haze production.

These observations were also noted in previously
performed studies that used backscatter of light from the
cornea to objectively measure haze. They showed comparable
results to ours with regard to the intensity and course of
haze.19,20 The anterior stroma was also found to have the
highest intensity and area of haze during the peak months (1–
3 mo) compared with the mid and posterior cornea, which
suggests that it is the most affected area in cross-linking, as
previously noted.19,21 Moreover, the software measures of
corneal haze agree with our subjective grading of clinical
haze and with results of previous studies reporting on CXL in
keratoconus and corneal ectasia using Scheimpflug and
human observers.22 Both methods showed an increase in
haze at 1 to 3 months followed by a subsequent decrease
thereafter at 3 to 12 months.

One limitation of our study relates to corneal sector
categorization. The corneal stroma was equally divided into
anterior, mid, and posterior areas by a preset software feature.
Although this classification has as for a purpose to group
corneal haze in any corneal disease based on the relative
geographic location, it could be improved by a depth-specific

FIGURE 5. Analysis of sample patient haze and corneal brightness over time. Haze of the analyzed patient peaks in intensity (A)
and the area occupied (B) at 1 and 3 months after surgery compared with a preoperative condition, with a significant decrease to
preoperative values at 6 and 12 months postoperatively after a topical steroid treatment course, as can be seen on serial OCT
images (C). A slit-lamp microscopy image at 3 months showcases haze detected on OCT (D).
classification, which would be more clinically relevant for eyes after cross-linking, especially in terms of proximity to the endothelium, and would be independent on initial corneal thickness.

With the widespread availability of OCT machines in many eye clinics, we would predict that OCT-based haze assessment may become the standard methodology for following patients with corneal haze and scar and in the analysis of aggregate data for research purposes. Software based on image analysis can provide valuable and objective information, and can have a great potential for further improvements. In an era of proliferating CXL techniques, from variably accelerated to transepithelial to iontophoresis, to different newly devised agents, to customized photorefractive keratectomy and CXL (sequential or combined), an objective assessment of corneal haze is key to evaluating the safety of these emerging techniques.

REFERENCES